

Basic Admin Scripts

https://standby.cloud/

Author: Georg Völl

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 2 of 22

Table of Contents
1 Management Summary ___ 4
2 Installation and Uninstallation ___ 5

2.1 Requirements for installation ___ 5
2.2 Installation for all users ___ 5
2.3 Installation for one user ___ 5
2.4 Update and Uninstallation ___ 6
2.5 Download and install or update only one script __ 6
2.6 Prevent update or deletion of a script after modification ________________________________ 6

3 General Use __ 7
3.1 Man Pages __ 7
3.2 Common Options ___ 7

3.2.1 Option “--help” or “-h” ___ 7
3.2.2 Option “--version” or “-v” __ 7
3.2.3 Option “--quiet” or “-q” __ 7
3.2.4 Option “--import” or “-i” ___ 7
3.2.5 Option “--export” or “-e” ___ 7
3.2.6 Option “--output” or “-o” ___ 8

3.3 Common Environment Variables ___ 8
3.3.1 Variable “LOGFILE” __ 8
3.3.2 Variable “ENVELOPE_TABLE” ___ 8
3.3.3 Variable “DEBUG_LIB“ ___ 9

3.4 Library with Variables, Functions and Aliases __ 9
3.5 Return Code ___ 9
3.6 Handling of Devices and Signals __ 9
3.7 Output formats __ 9

3.7.1 Format “json” ___ 10
3.7.2 Format “plain” __ 10
3.7.3 Format “keys” ___ 11
3.7.4 Format “line” ___ 11
3.7.5 Format “table” ___ 11
3.7.6 Format “csv” __ 12
3.7.7 Format “tsv” __ 12
3.7.8 Format “etsv” ___ 12

4 Description of the scripts __ 13
4.1 Script “errormsg” ___ 13
4.2 Script “filecheck” ___ 13
4.3 Script “confirm” __ 14
4.4 Script “transfer” __ 14
4.5 Script “check-sudo” ___ 15
4.6 Script “check-port” __ 15
4.7 Script “get-ip” __ 15
4.8 Script “check-version” ___ 16
4.9 Script “compare-version” ___ 16
4.10 Script “convert-number” ___ 17

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 3 of 22

4.11 Script “get-platform” __ 17
4.12 Script “print-header” __ 18
4.13 Script “print-table” __ 18
4.14 Script “select-table” ___ 18
4.15 Script “norm-json” __ 19
4.16 Script “browse-json” ___ 21
4.17 Script “convert-json” __ 21

5 Summary ___ 22

Table of Figures
Figure 1: Displaying the help text .. 7
Figure 2: ENVELOPE_TABLE influences JSON output .. 8
Figure 3: JSON format ... 10
Figure 4: PLAIN format .. 10
Figure 5: KEYS format ... 11
Figure 6: LINE format .. 11
Figure 7: TABLE format ... 11
Figure 8: ETSV format ... 12
Figure 9: Script “errormsg” ... 13
Figure 10: Script “filecheck” ... 13
Figure 11: Script “confirm” ... 14
Figure 12: Script “transfer” ... 14
Figure 13: Script “check-sudo” ... 15
Figure 14: Script “check-port” .. 15
Figure 15: Script “check-version” ... 16
Figure 16: Script “compare-version” .. 16
Figure 17: Script “convert-number” .. 17
Figure 18: Script “get-platform” .. 17
Figure 19: Script “print-header” .. 18
Figure 20: Script “print-table” ... 18
Figure 21: Script “select-table” ... 19
Figure 22: Working with “norm-json” .. 20
Figure 23: Script “norm-json” ... 20
Figure 24: Script “browse-json” .. 21
Figure 25: Script “convert-json” ... 21

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 4 of 22

1 MANAGEMENT SUMMARY

This script collection is part of a larger collection designed to help administrators and developers
complete upcoming tasks quickly and automatically. Great emphasis was placed on interoperability,
which is why the scripts are written in BASH and run-on different platforms.

Why BASH and not Python or Java?

While software developers would probably prefer Python or Java, BASH know-how is still more
widespread among administrators. Given this circumstance, the scripts were created in BASH so that
administrators can understand the code and make changes if necessary.

Among other things, the scripts allow you to precisely determine the platform (to make your own scripts
multi-platform capable), working with files is made easier, downloading from remote servers is
improved, error output is simplified, and the processing of JSON files is optimized. Using them in your
own scripts is easy and permitted without restrictions.

All scripts can be used free of charge and adapted if necessary. Updates and support are also free of
charge. Send your questions, errors found and requests for enhancements to: support@standby.cloud

The latest version can be downloaded here:

https://standby.cloud/download/pdf/Basic-Admin-Scripts.pdf

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 5 of 22

2 INSTALLATION AND UNINSTALLATION
2.1 Requirements for installation
All scripts are written in BASH (a shell program and command language supported by the Free Software
Foundation and first developed for the GNU Project) and should run on every UNIX / Linux environment
(including macOS, Solaris and emulators like Windows Subsystem for Linux (WSL) or Cygwin).

All scripts are best tested on Oracle Linux 7 to 9 (which is compatible with RedHat), but also tested on
macOS, Ubuntu, and Solaris. The processor architecture is irrelevant because we don't install binary
tools. Older OS versions may not have all required tools or version of tools installed - so it is
recommended to use a newer version of the OS. For example, we need “bash” equal or newer than
version 4.3 and a newer version of "sed" for some string transformations. The scripts will inform you,
when a required tool or version is missing (this will happen only in very few cases), and you should then
update your tools or install GNU tools.

To download the scripts from the internet server, an internet connection and "curl" is required. In very
few cases where "curl" is not installed, you can install or update "curl" manually. For example, on Oracle
Linux (or Red Hat or CentOS) with the command:

sudo yum install curl

For the transformation of JSON files, the tool "jq" is needed. It is installed on most of Linux
environments. If it is not already installed, please download, and install it from here:

https://jqlang.github.io/jq/download/

2.2 Installation for all users
To install all scripts (latest stable version) for all users (preferred), please call this command:

curl -skL https://standby.cloud/download/latest/install-scripts | sudo bash -s basic

You need to be logged in as “root” or enabled to use “sudo” – otherwise you can only install the scripts
for one user (yourself). To update to newer versions, call the command from above again. Existing
scripts were then being updated and obsolete scripts were deleted. After the installation, the scripts can
be found at scripts path, the man pages at the man path and information about what was installed at
info path.

SCRIPTSPATH: /usr/local/bin
 MANPATH: /usr/local/share/man
 INFOPATH: /usr/local/share/info

During the installation of the scripts, the profile “.bash_profile” will be copied to “.bash_profile.old” and
the PATH will be extended if necessary. You will then be informed and asked to re-login or source the
new profile. This is also the case if you install the scripts for a single user. Uninstallation of the scripts
will not automatically change the profile back to its original.

2.3 Installation for one user
To install all scripts (latest stable version) for one user (yourself), please call this command:

curl -skL https://standby.cloud/download/latest/install-scripts | bash -s basic

This is necessary for example in OCI Cloud Shell, where “sudo” is not allowed. Used locations in this
case are:

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 6 of 22

SCRIPTSPATH: ${HOME}/.local/bin
 MANPATH: ${HOME}/.local/share/man
 INFOPATH: ${HOME}/.local/share/info

Everything is installed under your HOME directory. To install the current beta version of the scripts,
exchange “latest” with “beta” in the URL. This is only recommended if you know exactly what you are
doing.

2.4 Update and Uninstallation
To update all the scripts, just use the same command as for installation. If you want to check first if
there is a newer version available (or to see if the scripts are already installed or can be installed), use
this command:

curl -skL https://standby.cloud/download/latest/install-scripts | sudo bash -s check

To uninstall all scripts and manuals, please call this command:

curl -skL https://standby.cloud/download/latest/install-scripts | sudo bash -s remove

To update or uninstall a single user installation, login with this user and call the above command without
“sudo”. The information stored at the info path will be used to remove everything previously installed.

2.5 Download and install or update only one script
It is recommended to install or update the scripts with the above commands. All scripts are then installed
or updated together, and dependencies are resolved. The latest stable version of the scripts can be
found here:

https://standby.cloud/download/latest/

Older versions of the scripts can be found here:

https://standby.cloud/download/scripts/

If you only want to use a subset of the scripts or use an older version of one script, download it from the
above URLs and install it manually. The links are also handy if you prefer to check first what you
download before you install and use it. The full source code could be checked before installation.

2.6 Prevent update or deletion of a script after modification
If you want to modify one or more scripts by yourself (e.g., in case you find an error and you don’t want
to wait for support to fix it or you want to enhance the functionality), it may make sense to save it then
from unwanted deletion.

To do this, please look for a comment line in the script starting with “# Version: @(#)” and change it to
something like “# Version: @(MyNameOrOrganization)”. When you do an update or uninstallation with
the commands from above, your modified file will not be touched.

There is a risk that after an update some scripts will not work anymore because of the dependencies
and shared interfaces that may change. So, it is highly recommended, that you tag your modifications
and rename the modified files before the update. After the update, copy your modifications into the
updated scripts. The tool “diff” could also help you to see the differences between your modified script
and the new version of the script.

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 7 of 22

3 GENERAL USE
In this section you will find a description of the functionalities that are valid for all or most scripts.

3.1 Man Pages
All scripts are provided with a man page. Use the command "man" followed by the script name e.g.:

man get-ip

You will see the synopsis, description, options, examples and exit codes displayed for the script.

3.2 Common Options
In this section you will find an overview of the most used options.

3.2.1 Option “--help” or “-h”

If you call the script with this parameter, a short help will be displayed instead of executing the script.

Figure 1: Displaying the help text

3.2.2 Option “--version” or “-v”

If you call the script with this parameter, only the version of the script will be displayed e.g., “3.2.0”.

3.2.3 Option “--quiet” or “-q”

Sometimes error messages are more annoying than helpful, e.g., if you only want to check the result of
the entire script via return code and do not need detailed error messages. With this option, you can
suppress most error messages via screen output.

3.2.4 Option “--import” or “-i”

Reads from a file whose name is specified after the option.

3.2.5 Option “--export” or “-e”

Directs the output to a file whose name is specified after the option.

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 8 of 22

3.2.6 Option “--output” or “-o”

Selects the output format which is specified after the option. Please lookup “Output formats” for more
information. If you can specify the output format, you can usually also select the keys as a parameter
to be displayed. These keys can be changed in order or additional keys can be specified as
placeholders. Keys must be all in a string separated by colon (preferred), tab or comma e.g.:

get-ip --output json ip:user_agent/product

3.3 Common Environment Variables
The variables listed here influence the behavior of the scripts. Since all other scripts use "errormsg" and
"lib.bash", and "print-table" is often used, these variables influence the overall behavior.

3.3.1 Variable “LOGFILE”

This environment variable is being used in the script “errormsg”. If set, all error messages, or warnings,
displayed by the script, are also written to the specified file. This could be useful for debugging or for
later analysis. Example:

export LOGFILE="${HOME}/test.log"

3.3.2 Variable “ENVELOPE_TABLE”

This environment variable is being used in the script “print-table”. If set to “false”, the output format
“json” is not enveloped to “content” with number of items and optionally the name of the creator script.
Example:

export ENVELOPE_TABLE=false

Figure 2: ENVELOPE_TABLE influences JSON output

If JSON is enveloped with “content”, we are assuming that it was already normalized and not being
transformed in combination with the script “norm_json”.

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 9 of 22

3.3.3 Variable “DEBUG_LIB“

This environment variable is being used in the library “lib.bash”. If set to “true” some variables are written
to /dev/tty and optional written to $LOGFILE if variable is set. This could be useful for debugging or for
later analysis. Example:

export DEBUG_LIB=true

3.4 Library with Variables, Functions and Aliases
All scripts use a common library "lib.bash". At the beginning of each script, the library is searched for
and then integrated via "source". Useful functions, variables (e.g., color definitions) and alias definitions
are defined. Although the library does not need to be executable (since it is included via "source"), do
not change this because it will make it more difficult to find the library.

3.5 Return Code
Each script returns a return code indicating whether the script ran successfully or generated an error.
You can also use this return code in your own scripts:

ip=`get-ip ip`
state=$?

if [$state -eq 0 -a "$ip" != ""]; then
 echo "Your external IP is: '$ip'"
else
 echo "IP not resolved (state: $state). Do you have an internet connection?"
fi

3.6 Handling of Devices and Signals
If the user presses Ctrl-C, the scripts were stopped immediately. This is done be setting “trap” for
SIGINT in “lib.bash”. To avoid multiple abort messages in a possible cascading of scripts, a temporary
file is created whose name begins with the username, e.g., /tmp/opc_INTERRUPT.tmp. This temp file
is deleted as soon as a script is restarted. Also, most of the script are using one or more of these
devices:

/dev/null Null Device – Output is being ignored
/dev/tty Terminal – No redirection (use the keyboard and screen)
/dev/stdin Standard input – Could be a redirection e.g., through a pipe or from keyboard
/dev/stdout Standard output – Could be the terminal or output to a file
/dev/stderr Standard error – Could be the terminal or a logfile

If your platform does not support these devices, the scripts may not run properly.

3.7 Output formats
Some scripts can display the result in different output formats. You can find out which format is
supported by which script in the description of the respective script itself. If a script itself does not allow
output as "csv", for example, you can first select the "etsv" (Enhanced TSV) format and then use the
"print-table" script to convert it to the desired final format.

get-ip --output etsv | print-table --output csv

In addition, the values (if using format “line” or “table”) can be highlighted using colors. For example, if
you want to display all values with content “true” in green and all values with content “false” in red, use
this syntax:

get-ip --output etsv | print-table --output line --green true --red false

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 10 of 22

3.7.1 Format “json”

The output in JavaScript Object Notation (JSON) follows the rules of this notation. A sequence of
key/value pairs is represented as an object or array according to a specific syntax. A value can consist
of a value (string, number, or keyword such as null) or can be an object or array and thus represent
another level with key/value pairs.

Figure 3: JSON format

3.7.2 Format “plain”

If you specify a single key in the "plain" format and this key has a value other than array or object, the
value is displayed. This is the easiest way to get one value from one key. If there are several keys and
none has been selected, then all keys of one level are displayed. If you want to display the value of a
key on a lower level, first enter the key of the first level and then the key of the second level, separated
by a slash.

Figure 4: PLAIN format

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 11 of 22

3.7.3 Format “keys”

The "keys" format is best suited to display all key/value pairs simultaneously and to use them for
automated evaluation. A key can be searched for using "grep" and the value can be read using "cut"
after the tab.

Figure 5: KEYS format

3.7.4 Format “line”

Like "keys", the "line" format displays all key/value pairs simultaneously. However, automatic evaluation
is more difficult because the focus here is on the output on the screen in a formatted way. Also (unlike
"keys") only the key/value pairs that are set are displayed. For example, “ip_v6” and “hostname” are
only displayed when returned from “get_ip”.

Figure 6: LINE format

3.7.5 Format “table”

The "table" format is only intended for output on the screen in a formatted way. The keys form the
heading, and the values are displayed below in tabular form.

Figure 7: TABLE format

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 12 of 22

3.7.6 Format “csv”

CSV (comma-separated values) is a text file format that uses commas to separate values, and newlines
to separate records. A CSV file stores tabular data (numbers and text) in plain text, where each line of
the file typically represents one data record. Each record consists of the same number of fields, and
these are separated by commas in the CSV file. If the field delimiter itself may appear within a field,
fields can be surrounded with quotation marks.

3.7.7 Format “tsv”

TSV (tab-separated values) is a simple, text-based file format for storing tabular data. Records are
separated by newlines, and values within a record are separated by tab characters. The TSV format is
thus a delimiter-separated values format, like comma-separated values.

TSV is a simple file format that is widely supported, so it is often used in data exchange to move tabular
data between different computer programs that support the format. For example, a TSV file might be
used to transfer information from a database to a spreadsheet.

The first row (header) contains the column headings. All subsequent rows contain the actual data.

3.7.8 Format “etsv”

ETSV (enhanced tab-separated values) is based on TSV and is compatible with it, but at the same time
allows more information to be stored about the individual value. This makes it possible to create a JSON
file from an ETSV.

In a JSON file, the key-value pair is enclosed in quotation marks if the value is a string e.g.:

"country": "Germany"

However, if the value is a number, it is not enclosed in quotation marks e.g.:

"longitude": 6.7026

In ETSV, a number is enclosed with a slash so that this can be used when converting to JSON and the
quotation marks are omitted in this case. For example:

abc will be converted to “abc”
/123/ will be converted to 123
/{}/ (JSON Object) will be converted to {}
/[]/ (JSON Array) will be converted to []
/null/ will be converted to null
// will be skipped (key/value pair will be ignored during conversion)

Figure 8: ETSV format

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 13 of 22

4 DESCRIPTION OF THE SCRIPTS
4.1 Script “errormsg”
This script helps to output error messages and is used in all other scripts.

Figure 9: Script “errormsg”

4.2 Script “filecheck”
This script helps with working with files (uses and extends the existing possibilities in BASH).

Figure 10: Script “filecheck”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 14 of 22

4.3 Script “confirm”
With this script, you can ask a multiple-choice question and get the answer via /dev/stdin. The input can
therefore be made via the keyboard or, for example, via "pipe":

echo "yes" | confirm "Do you want to continue?"

Returns the value "0" as if the input had been made via the keyboard.

Figure 11: Script “confirm”

4.4 Script “transfer”
This script uses "curl" to load a file using the given URL and checks for errors during the download or
in the file.

Figure 12: Script “transfer”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 15 of 22

4.5 Script “check-sudo”
This script checks whether the current user can execute commands with root rights using "sudo". If a
password is required, this is requested. The return code is 0 if the current user is root or is allowed to
execute "sudo". Otherwise, a return code greater than 0 is returned.

Figure 13: Script “check-sudo”

4.6 Script “check-port”
This script checks whether a port (or a list of ports) is accessible via the Internet. To do this, a connection
is established from an Internet server to the current VM (on which the script is running) and checked
whether the port is accessible. If the VM cannot be reached from the Internet (e.g., because a firewall
blocks this), the result is "false".

Figure 14: Script “check-port”

4.7 Script “get-ip”
This script determines the external (public) IP of the instance (or VM) on which the script is executed.
A connection is established to an external Internet server, which then tries to reach the instance. If the
instance can only be reached via a NAT gateway, for example, the public IP of the NAT gateway is
displayed.

Please also read chapter 3.2.1 (help on "get-ip") and chapter 3.5 (return code as a use case for using
"get-ip") if you skipped them. In addition to the IP, other key figures are returned, e.g., the approximate
location of the IP.

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 16 of 22

4.8 Script “check-version”
This script checks whether a tool is installed and in which version. First the path is displayed, then the
version number and if desired, it can also check whether the version is sufficient (by calling “compare-
version”). This script was created primarily for internal use of required tools and versions within the
script collection. However, it can also be used for other tools to a limited extent.

Figure 15: Script “check-version”

4.9 Script “compare-version”
This script compares two version numbers and returns "older", "newer“, or "same". Example:

result=`python --version 2>/dev/null`
stat=$?
if [$stat -eq 0]; then
 curvers=`echo "$result" | cut -d' ' -f2`
 echo "Version '$curvers'."
 result=`compare-version "3.8" "$curvers"`
 if ["$result" != "newer"]; then
 echo "Please upgrade to version 3.9 or higher."
 else
 echo "Version sufficient."
 fi
else
 echo "Python not installed."
fi

Figure 16: Script “compare-version”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 17 of 22

4.10 Script “convert-number”

This script creates a sequence of numbers based on the passed parameter (numberstr).

Figure 17: Script “convert-number”

4.11 Script “get-platform”

This script provides detailed information about the platform on which the script runs. Examples of
possible return values:

 bit: 32 / 64
processor: arm / i386 / sparc
 os: Linux / Darwin (for macOS) / SunOS (for Solaris)

Further information about the default gateway and network interface is displayed.

Figure 18: Script “get-platform”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 18 of 22

4.12 Script “print-header”

This script paints a frame around a heading.

Figure 19: Script “print-header”

4.13 Script “print-table”

This script converts a TSV file into various other formats, e.g., the file can be displayed in table format.

Figure 20: Script “print-table”

The output in JSON is still in an experimental stage.

4.14 Script “select-table”

This script displays (like "print-table") a TSV file in table format (but only this output format is supported
here) and then waits for input. A new column "sel" (for Selection) is inserted in front of the table, the
rows of which are numbered consecutively.

If you select one of the displayed line numbers, the entire line (without the line number) is written as a
return value to the specified output file.

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 19 of 22

Figure 21: Script “select-table”

4.15 Script “norm-json”

This script checks the syntax of a JSON file for correctness and converts it into a uniform format so that
an automatic evaluation can always be carried out according to the same criteria.

Conversion to an array:

An array is always created from the JSON object (or several objects) so that it is easier to access the
nth element, for example. You select the nth element in the array with the "--select" option. Specify a
number, starting with 1, after the option. For the second element / object, e.g., "--select 2".

Conversion to camelCase (ignored when using the "--raw" option):

All keys in the JSON file are converted to camelCase (https://en.wikipedia.org/wiki/Camel_case)
notation. The first letter must be lowercase otherwise the key will not be converted. Example:

"canonical-region-name" -> "canonicalRegionName"

Envelopes are stripped (ignored when using the "--raw" option):

If the JSON was enveloped, it starts with the object "content" (e.g., used by “print-table”), "items" (e.g.,
used by some object storage resources in OCI), "data" (e.g., used by the tool “oci”) or "result" (e.g.,
used by the tool “opc”), then this enveloping object is removed. Try it yourself with this command: "get-
ip -o json" and then enter this command "get-ip -o json | norm-json -s 1".

Comments

If a line begins with “//”, the whole line will be removed by the script and can be used for comments.
This is an addition to the JSON specification and not listed in the official RFC.

Backslash

Using a single backslash in JSON is not allowed, but a double backslash (\\) can be used in keys and
values although it is unusual. Working with a double backslash can cause confusion because the

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 20 of 22

backslash is masked and is displayed as a single backslash in text output. Therefore, the double
backslash is converted to a colon by "norm-json".

Figure 22: Working with “norm-json”

In the above illustration, you see a JSON file with two objects. In the first object, the keys are
represented in camelCase notation and in the second object with a hyphen. When the JSON is
converted using "norm-json", you get an array with the two objects and both objects use the camelCase
notation.

Figure 23: Script “norm-json”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 21 of 22

4.16 Script “browse-json”

This script reads individual values from a JSON object and outputs them in different target formats.

Figure 24: Script “browse-json”

4.17 Script “convert-json”

This script reads all values from a JSON object (at a specified depth) and outputs them in different
target formats.

Figure 25: Script “convert-json”

Basic Admin Scripts
Version: 1.0 15. November 2024 Page 22 of 22

5 SUMMARY
With this document, you received an overview of the available cross-platform scripts (written in BASH),
which can be used, modified, and used in your own scripts at any time free of charge.

